Image Analysis of Fine Structures of Supercavitation in the Symmetric Wake of a Cylinder

نویسندگان

  • Y. Obikane
  • M. Kaneko
  • K. Kakioka
  • K. Ogura
چکیده

The fine structure of supercavitation in the wake of a symmetrical cylinder is studied with high-speed video cameras. The flow is observed in a cavitation tunnel at the speed of 8m/sec when the sidewall and the wake are partially filled with the massive cavitation bubbles. The present experiment observed that a two-dimensional ripple wave with a wave length of 0.3mm is propagated in a downstream direction, and then abruptly increases to a thicker three-dimensional layer. IR-photography recorded that the wakes originated from the horseshoe vortexes alongside the cylinder. The wake was developed to inside the dead water zone, which absorbed the bubbly wake propelled from the separated vortices at the center of the cylinder. A remote sensing classification technique (maximum most likelihood) determined that the surface porosity was 0.2, and the mean speed in the mixed wake was 7m/sec. To confirm the existence of two-dimensional wave motions in the interface, the experiments were conducted at a very low frequency, and showed similar gravity waves in both the upper and lower interfaces. Keywords— Supercavitation, density gradient correlation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axially Symmetric Vibrations of a Liquid-Filled Poroelastic Thin Cylinder Saturated with Two Immiscible Liquids Surrounded by a Liquid

This paper studies axially symmetric vibrations of a liquid-filled poroelastic thin cylinder saturated with two immiscible liquids of infinite extent that is surrounded by an inviscid elastic liquid. By considering the stress free boundaries, the frequency equation is obtained. Particular case, namely, liquid-filled poroelastic cylinder saturated with single liquid is discussed.  When the waven...

متن کامل

Experimental Investigation of wake on an elliptic cylinder in the presence of tripping wire

In this research, the behavior and characteristics of the wake of flow in an elliptic cylinder with zero angle of attack in the presence of a tripping wire were investigated experimentally. For this purpose, the used an Aluminum cylinder with an elliptical cross section of the major and minor axis of 42.4 mm and 21.2 mm, respectively, and of the height of 390 mm. The cylinder model was examined...

متن کامل

Direct Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers

Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...

متن کامل

Experimental investigation for wake of the circular cylinder by attaching different number of tripping wires

An experimental study is conducted on flow past a circular cylinder fitted with some tripping wires on its surface. The work investigates the dependency of the critical wire locations on the wire size and Reynolds numbers, and examines the wake and vortex shedding characteristics in an effort to advance the understanding of the critical wire effects beyond the existing literature. The primary a...

متن کامل

Orr Sommerfeld Solver Using Mapped Finite Di?erence Scheme for Plane Wake Flow

Linear stability analysis of the three dimensional plane wake flow is performed using a mapped finite di?erence scheme in a domain which is doubly infinite in the cross–stream direction of wake flow. The physical domain in cross–stream direction is mapped to the computational domain using a cotangent mapping of the form y = ?cot(??). The Squire transformation [2], proposed by Squire, is also us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012